

Program Cover Document -MAT 341: Computational Mathematics

I. Basic Course Information

MAT 341: Computational Mathematics is an upper-level course. It has two 80-minute

meeting periods each week. The prerequisites are MAT 200 (Proof Writing through Discrete

Mathematics), MAT 205 (Linear Algebra: Theory and Applications) and CSC 220 (Computer

Science I: Computational Problem Solving) or CSC 250 (Accelerated Computer Science I, II). It is

an option for all majors in the Department of Mathematics and Statistics and is one of two ways

students in the Applied Mathematics specialization can fulfill their second computer programming

requirement.

Computing is an essential part of modern mathematics. The partnership of applied

mathematics, mathematics, and computational mathematics brings the tools of modeling, simulation,

and data analysis to bear on real-world problems, producing solutions with the power to predict and

explain complex phenomena. Computational methods are used in a wide variety of areas in

mathematics, computer science, business, engineering, the natural sciences, and the social sciences.

As a result, Computational Mathematics combines the beauty and logic of mathematics with the

application of computing to solve mathematically modeled problems.

This course will help students develop the computational skills required to solve real-world

problems. Significant work on topics drawn from core courses in mathematics that students have

taken will be covered, but from a computer solution point of view. Students completing the course

will be well prepared for the following opportunities:

 More advanced undergraduate study of computationally based mathematical topics

 Further training in professional masters or doctoral programs in applied mathematics and

mathematics.

 Careers that require the ability to integrate computation and mathematical skills.

The goal of computational mathematics, put simply, is to find or develop algorithms that solve

mathematical problems computationally (i.e. using computers). There are multiple programming

languages, including but not limited to C++, Java, Python, Mathematica, Matlab, Maple, SAS, R and

Excel/VBA, that facilitate solving computational mathematics problems. The choice of the best, or

most appropriate, software platform in which to do programming should be completely determined

by the applications being studied and the intended student audience. The primary focus of MAT 341

is on the mathematical algorithms and their implementation, and not on learning additional computer

languages.

For Undergraduate Bulletin: Computational Mathematics combines the beauty and logic of

mathematics with computing. In Computational Mathematics, students will learn how to develop and

implement mathematical algorithms that can be utilized to solve real-world problems in many

disciplines. Much of the course content will draw on topics from earlier mathematics courses, but

these topics will be covered from a computer solution point of view.

II. Learning Goals

The primary learning goals of this course are for students to a) learn how to make a computer

either solve a mathematical problem; b) gain insights through simulation into how one might solve a

problem; c) use computation to gather data to help formulate and refine a mathematical conjecture;

and d) understand how the computational complexity of an algorithm affects the usefulness of a

particular computational approach. This course will build on mathematical topics students have been

taught in core courses within their major from a theoretic approach and reexamine these same topics

from a computational/algorithmic point of view. Specific objectives for the course are:

1. Students should gain an appreciation for the role of computers in mathematics, science,

engineering and economics as a complement to analytical and experimental approaches.

2. Students should develop a knowledge of numerical approximation techniques, know how,

why, and when these techniques can be expected to work, and have ability to program

numerical algorithms

3. Students should have learned what computational mathematics is about: designing algorithms

to solve scientific problems that cannot be solved exactly; investigating the robustness and

the accuracy of the algorithms and/or how fast the results from the algorithms produce

solutions. These items includes a basic understanding of computer arithmetic and round-off

errors, how to avoid loss of significance in numerical computations, and computational

complexity.

4. Students should be able to use and evaluate alternative approaches and algorithms for the

solution to a computational problem, including the use of recursive algorithms, iterative

algorithms, and where appropriate, closed form solutions.

5. Students should appreciate and demonstrate skills in oral, written and graphical

communication, and know the importance of each.

The specific content goals of the course will be determined by the instructor, but it is expected that

many of the following topics will be covered in the course:

 Functional and imperative programming languages.

 Functions and Programming; Differences between programming recursive, iterative, and

closed form functions; Subroutines, user-defined Objects

 Computational Complexity

 Lists and Sets

 Recursive and Iterative Algorithms

 Numerical Algorithms and Accuracy. Specifically, Newton’s methods, calculation of

eigenvalue/vectors, determinants, solving differential equations, Euler’s methods,

 Graph and Tree Algorithms. Specifically, Euler and Hamiltonian circuits, Traveling

Salesperson problem, Greedy algorithm, Sorted edges methods, Kruskal’s method.

 Search and Sorting Algorithms. Insertion, Bubble, Quick, and Heap Sorts; Bisection

Algorithm

 Time Series Analysis

III. Student Assessment

To assess student understanding of the mathematical and computing topics covered in the

course, feedback will be given to students through any of the following mechanisms: commented

and/or graded homework, projects, computer programs, examinations, and in-class work.

IV. Learning Activities

In-class learning activities include lectures on mathematical and computer science concepts,

discussion, group work, and instruction on programming language syntax and programming

techniques. The course will primarily be project based and assignments will be made on each topic

covered in the course that involve theory based work, paper and pencil computational work and

significant computer programming. Specific activities and work will include the following: 1)

Assignments based on each major topic, including written work, programming and in some cases

oral presentation; 2) Written and/or oral examinations; 3) As a final assessment tool, either an

individual or small group project to be completed, or a formal final cumulative examination will be

administered.

