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and their Rotational Groups 
I. Introduction 

The symmetry group for a physical object is the set of ways that object can be 
repositioned so that it maintains its symmetry, or looks the same. Any object of any 
dimension has such a group of symmetries. Some objects, like the letter J, have only one 
symmetry called the identity because the only way they maintain their symmetry is to 
remain in the same place. Other objects, like an equilateral triangle, have several 
symmetries because they can be repositioned by rotations or reflections and still maintain 
symmetry. 

The symmetries of any object form a mathematical group under symmetry. The 
set of three-dimensional objects called regular solids possess many beautiful symmetries 
and accordingly form interesting symmetry groups under their rotations. 

A Regular Solid, or Platonic solid, is a three-dimensional polyhedron such that 
each face is a regular polygon, all faces are isometric to each other, and all vertices are 
isometric to each other. For geometrical objects, isometric means congruent. Therefore 
every face of a regular solid has the same number of edges and every vertex connects to 
the same number of faces. 

It turns out that among all the three-dimensional objects that can possibly be 
created, only five regular solids can be formed. Each is named for its number of faces. 
The five regular solids are: 

1. The Tetrahedron, a 4-sided solid with equilateral triangles as faces 
2. The Hexahedron or Cube, a 6-sided solid with squares as faces 
3. The Octahedron, an 8-sided solid with equilateral triangles as faces 
4. The Dodecahedron, a 12-sided solid with regular pentagons as faces 
5. The Icosahedron, a 20-sided solid with equilateral triangles as faces 

Figure 1.1 v 2. 4. 5. 
Any regular or non-regular polyhedron, which is any completely enclosed solid 

with regular or non-regular polygonal faces, has v vertices, e edges, and f faces. Euler 's 
Observation tells us that any polyhedron maintains the equality f + v - e = 2 ,  which we 
note holds true for the regular solids in Table 1.2. 

For the regular solids, we know that each vertex is isometric to every other vertex. 
Therefore the same number of faces k meet at each vertex. We also know each face must 
be the same regular polygon, so each face as n sides. See Table 1.2 to see the properties 
of each regular solid. 



Table 1.2 

Because of the symmetry created by a regular solid, we can find some equalities 
among the values of v, e,J; k, and n. 

Note that a regular n-gon has n  vertices which implies each face of a regular solid 
touches n  vertices. If we multiply the vertices of each face n  by the number of facesf, we 
get a multiple of the number of vertices of the entire regular solid. We do not get the 
exact number v because each vertex is touching more than one face - each vertex is 
touching k faces. Therefore multiplying n- f will give us k times the number of vertices 
v. Hence, for all regular solids n . f = k . v . 

We can also count the edges in a similar manner. Each edge has one vertex on 
each end, so each edge touches two vertices. Therefore multiplying 2  by e  will give us a 
multiple of the amount of vertices of the regular solid. Since each vertex touches k  faces, 
it is also touching k  edges. Hence the multiple of v will be k  -v once again, and we 
conclude 2 . e  = k - v  = n- f . 

11. Proving How Many Regular Solids Exist 
It seems amazing that among all the 3-dimensional objects, only five regular solids exist. 
However we can prove that there are only five. 

Theorem: Only five regular solids exist. 
Proof: We found that any regular solid has the equality 2 .  e  = k - v = n  . f . 
Euler's Observation states f + v - e  = 2  . Combining the equalities we get: 
2 . e  2 . e  2en 2ek ekn 
- + - - e = 2  = - + - - - =  2  32en+2ek-ekn=2kn 

k  n  k n k n k n  
1 1 1 1 1 1  1 

3 - ( 2 e n + 2 e k - e k n ) = - ( 2 k n ) z - + - - - = - .  Note - > 0  sinceno 
2enk 2enk k n 2 e  e  

1 1 1 1  1 1 1  
polyhedron can have 0 or fewer edges. Thus - + - - - = - > 0 3 - + - - - > 0 

k n 2 e  k n 2  
1 1 1  1 1 1  z - + - > - . Thus, any k and n  combination where - + - > - will form a regular solid. 
k n 2  k n 2  

Before we find such combinations, we must note the following restrictions: 
i.) First we note that n 2 3 since polygons must have at least 3 sides. 
ii.) Also note that k  2 3 in all cases. Clearly if k  = 1 ,  then the entire figure would 

be one sided, and hence two-dimensional. If all vertices only touched one side, there 
would only be one side. If k  = 2  , then two adjacent faces would be forced to lie in the 
same plane in order to keep the solid completely enclosed. Likewise the object would 
reduce to two dimensions. 



See Figure 2.1 for an illustration of this contradiction for 3,4,5,  and 6 sided 
polygons, confirming k > 2 in all cases. Notice how if any of these sets of polygons 
were folded so that edges meet and form an enclosure, it would force adjacent faces to 
overlap. 

Figure 2.1 , ... 

iii.) Note that for any n, once we find some k" such that the combination of n and 
k" do not form a regular solid, then the combination of n and k for all k > k will also fail 

1 1 1  
to form a regular solid, by the following: Given k > k" where7 + - I -, it follows that 

k n 2  

iv.) Similarly, once we find some ii where we cannot form a regular solid for any 
k, then we cannot form a regular solid for any n > ii , by the following: Given n > ii 

1 1 1 1 1  
where -+_ I -  forallk. Ifit'strueforallk, thenit'struefor k = 3 .  Thus -+-5- .  

k n 2  3 i i 2  
1 1  1 1 1 1 1  

i i < n ~ - < ~ - - + - < - + ~ I - .  Thusforall n> i i , nand  k = 3  donotforma 
n n  3 n 3 n 2  

regular solid. In note iii. above, we showed if n and k = 3 do not form a regular solid, 
then n and all k > 3 do not form a regular solid. Since k 2 3 in all cases then all n > ii 
cannot form a regular solid with any possible k. 

With these restrictions, we must only inspect a finite amount of combinations of n 
and k to find which combinations form regular solids. As stated above, for any n once we 
find a k that doesn't form a regular solid we can stop. Likewise once we find an n that 
cannot create a regular solid we can stop. See Table 2.2 where we check all possible 
combinations and show only five such combinations form regular solids. 

Table 2.2 

Hence we have proven there are exactly five regular solids that can be formed. 



Finding such possible combinations can also be illustrated quite nicely. Since 
each vertex is isometric to each other, we may inspect one vertex and decide whether it 
can be a vertex on regular solid with a given n and k. 

We can represent a vertex in two dimensions by "flattening" the vertex so that we 
see all of its neighboring faces in one plane. To visualize the regular solid, imagine the 
polygons being folded into the paper until the edges of all polygons meet and begin to 
enclose the solid. The vertex representations that can form a regular solid are the ones 
that can be folded into the paper in such a way. If the edges already meet or overlap, then 
the object cannot be folded into the paper and will be stuck in two dimensions, thus 
failing to form a regular solid. 

This implies the condition that the interior angles of the faces meeting at a vertex 
must not be greater than 2n. Since an interior angle of an n-gon is 7r - 27r / n , the sum of 
the interior angles of k faces is k[7r - 2 z  / n] . Thus in order to form a regular solid, we 

must have a k and n such that k [ n -  27r / n] < 27r (Pap. 466). 
In Figures 2.3-2.5 we see the vertex representations for the regular solids, as well 

as vertex representations of n and k combinations that do not form regular solids by 
having the sum of the interior angles greater than or equal to 271.. Compare the n and k 
combinations in the following Figures to Table 2.2 to see that both methods find the same 

- combinations of n and k to form regular solids. 

Figure 2.3, n = 3 : 

k = 3 
Angle sum < 2n k = 4  Angle sum < 2n 
(Tetrahedron) (Octahedron) 

Angle sum < 2x Angle sum = 2x 
(Icosahedron) (NOT a regular solid) 



Figure 2.4, n = 4 : 

"'-p 
Angle sum < 2a 

(Cube) 

Figure 2.5, n = 5 : 

Angle sum = 2a 
(NOT a regular solid) 

Angle sum < 2a 
(Dodecahedron) 

Angle sum > 2a 
(NOT a regular solid) - .. . - . .  

The above condition for the sum of interior angles also tells us that no regular 
solid can be formed for polygons of six or more sides. See Figure 2.6 which shows a 
vertex joining three regular hexagons. Since the edges already meet, the figure is trapped 
in two-dimensions. This would form an interesting tessellation or floor tile, but not a 
regular solid. Also since any n-gon where n > 6 would have larger interior angles than 
the hexagon, this confms that n I 5 in order to form a regular solid. 

Figure 2.6, n = 6 

\ / Angle swn=2a 
(NOT a regular solid) 



Recall for the objects in Figures 2.3-2.5, the description instructed the reader to 
"imagine the polygons being folded into the paper until the edges all polygons meet and 
begin to enclose the solid". If we continue forming isometric vertices from that first 
vertex, we could create the entire regular solid. Since any one vertex is isometric to 
every other vertex, knowing the properties of one vertex can generate the entire solid in 
this fashion. Therefore all we need to know are the values of n and k to form a regular 
solid. 

In. Symmetry Group Axioms 
The beautiful thing about the regular solids is their symmetry. Since all vertices, 

faces, angles, and edges are isometric to each other, each solid can be rotated in many 
ways while maintaining all these symmetries. Thus the rotations of each regular solid 
that maintain all symmetries form a mathematical group under rotation. 

We will refer to such groups as G, , where S = (T, C, 0, D, I} referring to the first 
letter of each regular solid. The following is an informal proof that the rotations of the 
regular solids possess the four group axioms: 

i.) Associative: Since rotating any solid permutes the vertices v, then G, S, . Since 
S, is associative, so is its subset G,. 

ii.) Identity: If we simply do not move the solid, everything remains fixed. Therefore 
the identity is when we do not rotate the solid at all. 

iii.) Closure: If we follow any rotation that maintains all symmetries with a second 
rotation that maintains all symmetries, then clearly all symmetries are maintained and we 
are still inside the group of rotations that maintain symmetries. 

iv.) Inverse: For any rotation that takes the solid to some new position, we can simply 
rotate it back to its original position which would be the inverse rotation. 

IV. Symmetry Group Orders 
There are several ways to find the order of the group of rotations G, of each 

regular solid. Knowing the order will help us classify the rotational groups later. 
Since the order of the group is equal to the number of elements in the group, or 

the number of rotational symmetries of each regular solid, we can simply count how 
many ways we can rotate each solid so that it maintains a similar position. The 
tetrahedron is the easiest to visualize with this method. 

The first element of the group of rotations of the tetrahedron is the identity, not 
moving the solid at all. Additionally, the tetrahedron can be rotated by 2x / 3 or 4x1 3 
while fixing each of the four vertices, which accounts for 8 more elements. Also we can 
swap any pair of vertices, but notice doing so forces us to swap the remaining two 
vertices as well or else we would have a twisted or inverted solid. This will account for 
three such elements, for the three sets of pairs of vertices. This rotation is a rotation 
around the line connecting the midpoint of edge ab and the midpoint of edge cd. See 
Figure 4.1 for an illustration of these elements. 

This gives us 12 elements in total, thus telling us the order of the group of 
rotations of a tetrahedron is 12. By the description of these elements we recognize this 
group to be isometric to A,, the group of even permutations of four elements. We will 

prove this later on. For now we are just noting that (G,( = 12 . 



Figure 4.1 

This method for finding the order is manageable for the tetrahedron, but would 
become more cumbersome for the other solids. For example, it would be terribly difficult 
to find all the permutations of vertices for the 20 vertices of the dodecahedron. There are 
in fact easier methods for simply finding the order and we can do this by using the orbit- 
stabilizer theorem. 

The following three methods to finding the order uses the condition we found 
earlier for all regular solids: k - v = n - f = 2 - e . This formula is actually three 
representations of the orbit-stabilizer theorem and all three formulas are equal to the 
order of the group IG,( . 

Recall: For group G acting on set X by permutation so that G . X + X . The 
stabilizer Ga for some a E X is the group of elements in G that fix a. The orbit 
0, for some a E Xare all b E X  where b = g - a  for some g E G .  The Orbit- 

Stabilizer Theorem states that IGa 1 - 10, ( = I G I  (Pap. 139). 
I .) Usinn vertices: In this method we fix a vertex a and find how many possible rotations 
there are that fix that vertex. This is the same thing as finding the order of G, , the 
stabilizer of a. Since vertex a touches k faces and any rotation must send a face to a face, 
then we can rotate each solid in k different ways while keeping vertex a fixed, i.e. IGa( = k . 

Then we find how many places to which vertex a can be rotated. Since each 
vertex is isometric to every other vertex, vertex a can go to any of the v vertices. This is 
the orbit of a, so we have leal= v . By the orbit-stabilizer theorem this tells us the order 

of the group of rotations is found by the formula: JG,~ = k - v . 



2.) Using faces: In this method we fix some face b on the solid and then find how many 
ways we can rotate the solid so that the fixed face stays in the same place. This is the 
order of Gb , the stabilizer of b. This is equal to n, the number of sides on each face of 

the solid since we can rotate every face n  ways while maintaining symmetry, i.e. IGb1= n .  
Then we find how many places to which face b can be rotated. Since each face is 

isometric to every other face, face b can go to any of the f faces. This is the orbit of b, 
and we find lobl= f . By the orbit-stabilizer theorem this tells us the order of the group 

of rotations is found by the formula: IGS 1 = n  f 

3.) Using edges: Lastly, fix any edge c of the solid. Each edge can stay fixed for exactly 
two rotations for any solid, since the endpoints of each edge can switch places with each 
other. Thus for every edge, the stabilizer is only two elements, i.e. I G ~  = 2 .  

Then we find how many places to which edge c can be rotated. Since each edge 
is isometric to every other edge, edge c can go to any of the e edges. This is the orbit of 
c, so l0,l= e . Finally, the orbit-stabilizer theorem tells us the order of the group rotations 

is found by the formula IG,/ = 2.e.  

In summary, the order of the group of rotations of any regular solid has the 
equality: IG,(= k . v = n .  f =2 .e .  

Keeping this formula in mind, we see reproduce the earlier table in Table 4.2 with 
a new column for the order of the rotational group for each solid. We now notice some 
interesting equalities in the properties of the regular solids. 

. .  - 
Table 4.2 

From the table above we clearly see that IG,( = k  . v  = n -  f = 2 - e  for all of the 
regular solids. 

We also notice two interesting properties. First that each regular solid's rotation 
group G, has the same order as that of another regular solid GJ . We also see that for 

every regular solid i, that both k, = nJ and v, = f, for that solid j. Specifically, these 

equalities match the cube and the octahedron, the dodecahedron and the icosahedron, and 
the tetrahedron to itself. 

These regular solids that have such a match turn out to be regular solids that are 
dual to each other as we will find later. 



V. Spheres 
The regular solids have some interesting geometrical properties in that each regular solid 
can have: 

a,) A circumscribed sphere through its vertices so that each vertex of the solid 
tangentially touches the sphere 

b.) A midsphere where the sphere tangentially touches the midpoint of each edge on 
the solid 

c.) An inscribed sphere where the sphere tangentially touches the midpoints of each 
face on the solid 

Due to the symmetry of the regular solids and the isometric property between all 
vertices, edges, and faces, we see that each vertex is equidistant fiom the center point of 
the regular solid and likewise for the midpoints of the edges and the midpoints of the 
faces. This is the basis of being able to rotate the regular solids sending vertices to 
vertices, edges to edges, and faces to faces. 

Additionally, each of these spheres creates more symmetry inside each regular 
solid. For two of the spheres described above, connecting all the points where the sphere 
and regular solid intersect will create another regular solid where the vertices are the 
intersecting points. In the midsphere connecting the points where the regular solid 
intersects the sphere creates an Archimedean solid. 

a.) For the circumscribed sphere, it is clear that the "new" regular solid created is 
exactly the same as the old one. Since the intersection is the set of vertices of the regular 
solid, clearly they are just forming the same set of vertices. 

b.) Since the intersection of the midsphere and the regular solid connects the 
midpoints of each edge, we are truncating the regular solids. This creates an 
Archimedean solid, which is a polyhedron where all faces are regular polygons which 
may or may not be the same, all vertices are isometric to each other, and all edges have 
equal length. Note that regular solids are a subset of the Archirnedean solids. The 
Archimedean solid created by the midsphere in the tetrahedron is the octahedron, the 
solid created inside a cube or octahedron is the cuboctahedron, and the solid created 
inside a dodecahedron and icosahedron is the icosidodecahedron. See these 
Archirnedean solids in Figure 5.1. Note the "matching" between the cube and octahedron 
as well as that between the dodecahedron and icosahedron are again seen here. 

Figure 5.1 

cuboctahedron icosidodecahedron 

c.) The inscribed sphere is perhaps the most interesting. Since the set of vertices on 
the new solid i is the set of midpoints of the faces of the original solid j, then the number 
of vertices on the new solid v, is equal to the number of faces on the original solid f,, 

i.e. vi = f, . Likewise, each new vertex on i will originate from some face on j and 

connect to k, vertices. Since each vertex will connect to the midpoint of all neighboring 
faces to the originating face on j, it will connect to n, faces. Therefore each new vertex 

on i will have an edge connecting to n, vertices and we have k, = n, . 



The two equalities created by the inscribed sphere, v, = f, and k, = n, , tell us the 

exact identity of the new regular solid. Recall fiom Table 4.2, each regular solid i had a 
"matching" regular solid so that both vi = f, and ki = n, . Thus whatever regular solid 

we chose for i, we will know which regular solid j must be immediately. 

VI. Duals 
The new regular solid created by the inscribed sphere is called the dual solid of 

the original. Dual solids possess the characteristic of having complimentary numbers of 
vertices and faces, which is immediate from the description of its construction. 

We also see that the dual of a regular solid's dual is the original regular solid. For 
example, a cube inscribed inside an octahedron can have its own dual, an octahedron, 
inscribed inside. Accordingly we can create an infinite chain of duals inside of each 
other. 

See Figure 6.1 to see how the cube and octahedron are dual to each other. Figure 
6.2 shows an example of the duals inscribed in each solid. 

Duality is very important as we next classify the groups of rotations of each solid 
because the groups of rotations of dual solids are isomorphic. Since the dual of a solid is 
created fiom midpoints, it is perfectly symmetrical inside of the original solid. Therefore 
when the original solid is rotated in any manner, its dual is rotated in the exact same way. 
In fact, if you created a new object that was a regular solid with its dual constructed 
inside like in Figure 6.1, it would have all the same symmetries as either solid on its own. 

Therefore we know G, E G, for dual regular solids i, j. Specifically: G, s Go, 

G, = GI, and obviously GT E GT . 
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VII. Classifying the Groups 
Now that we have determined which regular solids are dual to each other, we will 

have two less groups to find. We will now classify: 
I .) The groups of rotations of the tetrahedron G, . 
2.) The groups of rotations of the cube G, , which will also give us the group of 

rotations of its dual, the octahedron, Go. 
3.) The groups of rotations of the dodecahedron G, , which will also give us the 

group of rotations of its dual, the icosahedron, G, . 

To do so we will use the fact that each group of rotations acts on a set of features 
of the regular solids by permutation. The set of features may be, for example, the set of 
vertices or diagonals. We know this is a group action on such elements since all rotations 
of each regular solid must maintain all symmetries. Therefore each rotation mapping 
vertices to vertices is in actuality permuting the vertices. 

In this approach it is necessary to fmd a set of features of the regular solids X 
where the rotational group of symmetries acts faithfully on X. Recall G acts faithhlly on 
X if the only element of G that fvres every element o f X  is the identity. Lastly note that 
the group denoted S,, refers to the permutation group permuting n elements. 

In classifying the groups of rotations for the regular solids, we will use the 
following theorem: 

Theorem 7: If the group of rotations of a regular solid Gs acts faithfully on some set of 
features of the regular solid X, then Gs is a subgroup of Sx. 

Proof: Let Gs be the rotational group of symmetry for some regular solid. Let X be 
some set of features of the regular solid, i.e. vertices, diagonals, or inscribed cubes. 
Assume Gs acts on X faithfully, which means the only element of Gs that fixes every 
element of X is the identity. 

Construct a homomorphism 4: G, -+ Sx . We know this is a good map since we are 

permuting the elements ofX. Consider the image of b(G,). We know the image is a 

subgroup of Sx, i.e. @(G,) I Sx . 

By the first isomorphism theorem, G, 1 Kern4 E @(G,). But if Gs acts on X 

faithfully, then the kernel is trivial. This implies G, / Kern4 1 Gs E 4(Gs) < S,. 
Thus, Gs _< S, . 

Using this theorem, we can now classify the rotational group of symmetry for each 
regular solid. 



The Tetrahedron: 
When we were finding the elements of the tetrahedron, we discovered the elements 
seemed to form A,, the group of even permutations permuting four elements. Using the 
previous theorem, we can now prove that G, E A, . 

Theorem: The group of rotations of the tetrahedron is isomorphic to A,, i.e. G, E A, . 
Proof: Let G, act on X, the set of the four vertices of the tetrahedron. Since the only 
element of G, that fixes every vertex is the identity, then we know G, acts faithhlly 

on X. Therefore by Theorem 7, we know G, 5 S, . Since s,I = 4! = 24 and we found 

earlier that I G , ~ =  12, then G, must be the only normal subgroup of order 12 in S, , 
which is A, the group of even permutations in S, . Therefore G, E A, . 

We may note two other ways we could have determined G, s A,. For one, we 
can easily find four distinct 3-cycles in G, permuting four elements, the vertices. We 
find these by rotating the tetrahedron by 0, 2 z  13, and 4 z  I 3 while fning each of the 
four vertices. Such three cycles generate the group A,. This would prove A, I G, 

3 A, z G, since I A, 1 = IG, 1 . 
We may also note that A, is the only group of order 12 where the element of 

maximal order is three. We can determine that the maximal order of an element in G, is 
three since it has triangular faces and three faces meeting at any one vertex. Any rotation 
will reach the identity on or before the third rotation. Then once we found the order 
using one of the methods described earlier, the fact G, E A, is immediate. 

The Cube: 
We will now determine to which group the rotations of the cube, G, , is 

isomorphic. Similarly to our approach to the tetrahedron we will use Theorem 7 and the 
fact that G, acts faithhlly on some set X. 

For the tetrahedron, we defined X as the set of vertices of the tetrahedron. It is 
true that G, acts faithhlly on the set of vertices in the cube, since the only rotation that 
fixes all eight vertices is the identity. However this will only tell us that G, sits inside 
S,, a group of order 40,320 and not such an easy group to work with. Therefore to 
classifL G,, we must find a smaller set X on which G, acts faithhlly. 

A smaller set X on which G, acts faithhlly is the set of diagonals, the lines 
connecting opposite corners of the cube as seen in Figure 7.1. We know that G, acts 
faithhlly because the only rotation of the cube that fixes all four diagonals is the identity 
rotation, not moving the cube at all. 



Figure 7.1 

Theorem: The group of rotations of the cube is isomorphic to S4 , i.e. G, S4 . 
Proof: Let G, act on X, the set of the four diagonals of the cube. Since the only 
element of G, that fixes every diagonal is the identity, then G, acts faithfully on X. 

Therefore by Theorem 7, we know G, 2 S4 . Since IS,( = 4! = 24 and we found 

earlier that )G,) = 24, then G, must be the improper subgroup of S4 . Thus, G, ; S4 . 

Once again note that since the cube and the octahedron are dual solids, that this 
also implies Go E S4 as well. 

We can find all elements and subgroups of S4 by looking at the actions certain 
rotations take on the diagonals. For example, a 4-cycle in S4 is any n I 2  rotation along 
an axis through the midpoints of opposite faces. In Figure 7.2, this is the permutation 
(1234). Note this is also an example of how Z 4  is a subgroup of -S4 since I(1234)1= 4 .  

Figure 7.2 



We can also find any 3-cycle by rotating the cube along any diagonal, as in Figure 
7.3 which shows the permutation (123) as we rotate along the blue diagonal labeled "4". 
This is also an example of the subgroup Z, that sits inside S, . 

Figure 7.3 

We can also find any 2-cycle by "fixing" any two diagonals and rotating the cube 
so that the remaining two diagonals switch places. See Figure 7.4 for an illustration of 
permutation (12). Note that to create a cycle of form (ab)(cd) , we may perform this 
step for two distinct pairs of diagonals simultaneously. Such an element is an example of 
the subgroup Z, that sits inside S, . 

We showed we can find the cyclic subgroups Z, , Z,, and Z4 as in Figure 7.2- 
7.4. Also Z, x Z, is generated by any two distinct rotations that are isomorphic to Z, as 
in Figure 7.4. 

We can also find the non-Abelian groups S, , D, , and A,. The group S, is generated 
by performing the actions of S, on the three pairs of opposite faces as seen in Figure 7.5. 
We can note the importance of faithfulness in Theorem 7 from these pairs of opposite 
faces. We see Gc is not faithfkl on the set of opposite faces since, in addition to the 
identity, a rotation of n I 2  in any direction fixes all opposite faces. Therefore since 
faithfulness fails in this instance, we cannot use Theorem 7 to say Gc is a subgroup of S, . 

Also note, the dihedral group D, is generated by the rotations fixing one pair of 
opposite faces as seen in Figure 7.6. Lastly, A4 is generated by the tetrahedron created 
inside the cube, as we found that the rotations of the tetrahedron are isomorphic to A,. 
This can be seen in Figure 7.7. 



Figure 7 5 
A 

Figure 7.6 

Lastly, we may note we could have also determined that G, z S4 once we found that 
there were elements of G, permuting the diagonals by (1234) and (12) as we did in 

Figure 7.2 and 7.4. Since (1234) and (12) generate S4 , then we could prove S4 I G, 

3 S4 z G, since ( s , I  = (G,/ . 

The Dodecahedron: 
Similar to the cube, we will not classify GD by using the fact the group acts 

faithfklly on the set of vertices since there are twenty of them. In this case even the 
diagonals are hard to deal with since there are ten diagonals. However, the dodecahedron 
does possess another smaller set of elements that the rotations in GD permute. It turns 
out that amongst the dodecahedron's symmetry, five distinct cubes can be inscribed 
inside any dodecahedron. 

Take the diagonal of a pentagon on any face of the solid. We can construct two 
more orthogonal lines fiom the original diagonal so that they are diagonals on 
neighboring faces. This forms a vertex and three edges of a cube. Continue forming 
orthogonal edges that are also diagonals of the pentagon faces until eventually an entire 
cube is formed inside the dodecahedron. 

We know this figure we constructed is a cube because all edges of the figure are 
diagonals of a pentagon which are parallel to an edge of the pentagon. Opposite edges of 
the figure are pqrallel to the same edge of some pentagon and hence parallel to each 
other. This impliesall faces of the figure are parallelograms. Because of the symmetry 
of the dodecahedron, both diagonals of each parallelogram are equal which implies each 
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face is a rectangle. Since all edges of the rectangles are equal, then the faces are squares. 
Since each face of the figure is a square then the figure is a cube. 

Since the cube has twelve edges and the dodecahedron has twelve faces, then 
some edge of the cube will be the diagonal on each face of the dodecahedron. Since each 
pentagon face contains five diagonals, then we can construct five such inscribed cubes. 
See Figure 7.8 for an illustration of the five such cubes. 

Figure 7.8 

The group of rotations of the dodecahedron, G, , permute the position of these 
five inscribed cubes and the only rotation that fixes all five cubes is the identity. We 
know this is true since, as stated earlier, one edge fiom each of the five cubes is the 
diagonal on each face of twelve faces. The only way for all five diagonals of a 
pentagonal face to remain fwed is for the entire dodecahedron to be unmoved. Therefore 
the only element of G, that fixes all five inscribed cubes is the identity, which means 
G, acts faithhlly on the five inscribed cubes. 

Finding this relatively small set of elements on which G, acts faithhlly allows us 
to use Theorem 7 to prove G, z 4. 

Theorem: The group of rotations of the dodecahedron is isomorphic to 4, i.e. G, E 4. 
Proof: Let G, act on X, the set of the five inscribed cubes of the dodecahedron as in 
Figure 7.8. Since the only element of G, that fixes all five cubes is the identity, then 
we know G, acts faithhlly on X. Therefore by Theorem 7, we know G, I S, . 
Since (s,I = 5 !  = 120 and we found earlier that IG,( = 60, then G, must be the only 
normal subgroup of order 60 in S,, which is 4 the group of even permutations in 
S, . Therefore G, z 4. 

Once again note that since the dodecahedron and the icosahedron are dual solids, 
that this also implies G, z A, as well. 

Finding a cube inside the dodecahedron immediately could make one think that 
S4 sits inside G, since we found that the group of rotations ofthe cube is isomorphic to 
S4 . After all, we found the tetrahedron sitting inside the cube and we confirmed that the 
rotations of a tetrahedron are a subgroup of the rotations of a cube since A, I S4 . 

However this cannot be true for a cube inside a dodecahedron. Recall we found 
earlier that I G , ~  = 60 and we know Is,I = 24. Since 24 does not divide 60, then S, 
cannot be a subgroup of G, as it would contradict LaGrange's Theorem. 



The difference is the rotations of a cube inside a dodecahedron do not always 
maintain symmetry in the dodecahedron. For example, rotating the cube by n / 2 (or by 
element (1234) E S4) does not maintain symmetry of the outside dodecahedron. See 
Figure 7.9 for an example. Notice how the rotation of the cube alters the symmetry of the 
dodecahedron so that it is no longer an element of G, . 

Therefore we can definitively say S4 is not a subgroup of GD . However, some 
elements in S4 must sit inside GD . There are some rotations of the cube that maintain all 
the symmetries ofthe dodecahedron. For example, if we rotated the cube by n (or by 
element (13)(24) E S4 ) we stay within the elements of the dodecahedron, as seen in 
Figure 7.10. 

Notice a rotation by n is an even permutation whereas a rotation by n / 2 is not. 
It turns out the only rotations of the cube that maintain the symmetries of the 
dodecahedron are the even permutations of the cube. We know the rotations of the cube 
are isomorphic to S4 , and we know that the subgroup of S4 which consists of all the even 
permutations of S4 is the subgroup A,. Therefore we can conclude that A4 5 GD . As 
we see in Figure 7.8, there are five cubes that can be inscribed in the dodecahedron. 
Hence there are five distinct subgroups of G, isomorphic to 4. 

Each of these subgroups contains four 3-cycles since 4 contains four 3-cycles as 
we noticed in the tetrahedron. Therefore between the five subgroups in G, , there are 



twenty 3-cycles in G, . Since the elements of G, permute the five cubes, then these 
twenty 3-cycles permute the five cubes. 

Consequently, we have found twenty distinct 3-cycles permuting 5 elements. 
Such elements generate the group A, (Pap. 72). This implies A, is a subgroup of G, , 
i.e. A, I G, . We know 14) = 5!/ 2 = 60 and we previously determined the order of 

(G,) = 60. Therefore we must have G, E A,, confuming what we previously 
determined. 

VIII. Historical Notes 
The earliest signs of regular solids date back thousands of years to the Neolithic 

people of Scotland. Stone carvings of each of the regular solids were discovered dating 
back to this era and are on display in the Ashmolean Museum in Oxford (Weisstein 
"Platonic"). 

The regular solids were later found during antiquity. They were described by 
Plato in 350 B.C. in his work Timaeus where he related each of the five solids to an 
element of the universe: the tetrahedron to fire, the cube to earth, the octahedron with air, 
the icosahedron with water, and the dodecahedron to that which makes up the 
constellations and heavens (Weisstein "Platonic"). Euclid also discussed the regular 
solids in 300 B.C. in Books XI11 - XV of his work Elements where he finds geometrical 
properties of the regular solids and discusses the concept of dual solids (Burn 60). 

The fact that the rotational groups of symmetry of the regular solids are 
isomorphic to the groups A,, S, , and A, was discovered by F. Klein in 1874 and 
described in his work Lectures on the Icosahedron (Burn 60). 

The regular solids appear in nature in crystallizations and many viral structures. 
For example, the herpes virus takes the form of an icosahedron (Wells) and the HIV virus 
is enclosed in an icosahedral capsid (Viral). 

In everyday life the regular solids commonly appear in the form of dice, most 
commonly the cube, since their symmetry allow such dice to be "fairyy. 
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