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Abstract
Collective migration is an important component of many biological processes, includ-
ing wound healing, tumorigenesis, and embryo development. Spatial agent-based
models (ABMs) are often used to model collective migration, but it is challenging
to thoroughly predict these models’ behavior throughout parameter space due to their
random and computationally intensive nature.Modelers often coarse-grain ABM rules
into mean-field differential equation (DE) models. While these DE models are fast to
simulate, they suffer from poor (or even ill-posed) ABM predictions in some regions
of parameter space. In this work, we describe how biologically-informed neural net-
works (BINNs) can be trained to learn interpretable BINN-guided DEmodels capable
of accurately predicting ABM behavior. In particular, we show that BINN-guided par-
tial DE (PDE) simulations can (1) forecast future spatial ABM data not seen during
model training, and (2) predict ABM data at previously-unexplored parameter values.
This latter task is achieved by combining BINN-guided PDE simulations with multi-
variate interpolation. We demonstrate our approach using three case study ABMs of
collective migration that imitate cell biology experiments and find that BINN-guided
PDEs accurately forecast and predict ABM data with a one-compartment PDE when
themean-field PDE is ill-posed or requires two compartments. This work suggests that
BINN-guided PDEs allowmodelers to efficiently explore parameter space, whichmay
enable data-driven tasks for ABMs, such as estimating parameters from experimental
data. All code and data from our study is available at https://github.com/johnnardini/
Forecasting_predicting_ABMs.
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1 Introduction

Many population-level patterns in biology arise from the actions of individuals.
For example, predator–prey interactions determine ecological population dynamics;
individuals’ adherence to public health policies limit disease spread; and cellular inter-
actions drive wound healing and tumor invasion. Mathematical modeling is a useful
tool to understand and predict how such individual actions scale into collective behav-
ior (Anguige and Schmeiser 2009; Brauer et al. 2019; Theo et al. 2022; Huppert and
Katriel 2013; Nardini et al. 2016; Shahzeb et al. 2023; Xiao and Chen 2001). In partic-
ular, stochastic agent-based models (ABMs) are a widely-used modeling framework
where autonomous agents mimic the individuals of a population (Baker and Simp-
son 2010; Volker et al. 2005; Marshall and Galea 2015; Melissa et al. 2018). ABMs
are advantageous because they capture the discrete and stochastic nature of many
biological processes (Chappelle and Yates 2019). However, ABMs are computation-
ally intensive, and their simulations can become time-consuming to perform when
the population is comprised of many individuals (Simpson et al. 2022; Nardini et al.
2021). This computational restraint prevents modelers from efficiently exploring how
model parameters alter model outputs. As such, there is a need for the development
of methods to efficiently and accurately predict ABM behavior (Nardini et al. 2021;
Kieu et al. 2020; Larie et al. 2021).

Modelers often perform ABM prediction by coarse-graining ABM rules into con-
tinuous differential equation (DE) models (Baker and Simpson 2010; Simpson et al.
2022). Ordinary DEs (ODEs) describe how a quantity (e.g., agent density) changes
over time, and Partial DEs (PDEs) describe how spatially-varying ABMs change with
time (Simpson et al. 2022). Such DE models are useful surrogates for ABMs because
they are cheap and efficient to simulate. Mean-field DE models, which assume agents
respond to the average behavior of their neighbors, have been shown to accurately pre-
dict ABM behavior at some parameter values. Unfortunately, these models can poorly
predict ABM outputs when the mean-field assumption is violated (Baker and Simpson
2010; Thompson et al. 2012). For example, Baker and Simpson (2010) demonstrated
that the mean-field DE model for a population growth ABM only accurately predict
ABMdatawhen agents proliferate slowly. A further complication ofmean-fieldDEs is
that they may be ill-posed at certain parameter values. Anguige and Schmeiser (2009)
used a stochastic space-jump model to study how cell adhesion impacts collective
migration and found that the resulting mean-field PDE model is ill-posed (and thus
cannot predict ABM behavior) for large adhesion values.

Despite the inability of mean-field DE models to predict ABM behavior at all
parameter values, ABM simulations do obey conservation laws (e.g., conservation
of mass for spatial ABMs) (VandenHeuvel et al. 2024). Alternative DE models may
thus be capable of accurately describing ABM behavior. Equation learning (EQL) is a
new area of research on the development and application of algorithms to discover the
dynamical systemsmodel that best describes a dataset (Brunton et al. 2016;Kaiser et al.
2018; Rudy et al. 2019; Champion et al. 2019; Mangan et al. 2016, 2017; Messenger
and Bortz 2021a, b; Lagergren et al. 2020a, b; Nardini et al. 2020). Brunton et al. 2016
Brunton et al. (2016) introduced a sparse regression-based EQL approach to learn DE
models from data with a user-specified library of candidate terms. This method has
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proven very successful in recovering informative models from simulated and experi-
mental data (Rudy et al. 2017). There is a growing understanding that EQL methods
can aid the prediction of ABM data (Nardini et al. 2021; Messenger et al. 2022; Mes-
senger and Bortz 2022; Supekar et al. 2023). For example, we recently demonstrated
that the least squares EQL approach learns ODE equations that accurately describe
simulated ABM data, even when the collected data is incomplete or sparsely sampled
(Nardini et al. 2021). Supekar et al. (2023) coupled this method with spectral basis
representation data to discover PDE models that capture the emergent behavior found
in active matter ABMs. Another popular EQL approach includes physics-informed
neural networks (PINNs), where modelers embed physical knowledge (in the form of
a known PDE framework) into the training procedure for artificial neural networks
(ANNs) (Cai et al. 2021; Kaplarević-Malisić et al. 2023; Linka et al. 2022; Raissi et al.
2019; Shin et al. 2020). Trained PINN models can predict complex, sparse, and noisy
data while also obeying known physical principles. Lagergren et al. (2020b) extended
the PINNs framework by replacing physics-based mechanistic terms with function-
approximating multi-layer perceptions (MLPs) to develop the biologically-informed
neural network (BINN) methodology. As a result, BINN models can learn PDE mod-
els from data with terms that depend on space, time, or agent density. Training the
BINN to simulated ABM data ensures that a realization of this PDE that best matches
the data is learned. Standard methods of DE analysis, including bifurcation analysis
and pattern formation, can be used to understand the ABM’s behavior. BINNs thus
present a promising and interpretable tool for ABM forecasting and prediction. How-
ever, determining how BINNs can be used to learn predictive DE models for ABMs
remains an open area of research.

In this work, we demonstrate how to combine BINNs and PDE model simulations
to forecast and predict ABM behavior. Our approach leverages BINNs’ vast data and
modeling approximation capability with the computational efficiency of PDE models
to develop a potentABMsurrogatemodeling tool. In particular, we demonstrate how to
use trained BINN models to (1.) forecast future ABM data at a fixed parameter value,
and (2.) predict ABM data at previously-unexplored parameter values. This latter
task is achieved using multivariate interpolation, which provides a straightforward
approach for inferring PDE modeling terms. We demonstrate that visually inspecting
the BINNmodeling terms over a range of ABMparameter values allows us to interpret
how ABM parameters impact model behavior.

We apply theBINNsmethodology to three case studyABMs in thiswork. Each case
study models collective migration in cell biological experiments, such as barrier and
scratch assays (Nardini et al. 2016; Simpson et al. 2022; Johnston et al. 2012;Lagergren
et al. 2020b; Decaestecker et al. 2007). In a barrier assay, a two-dimensional layer of
cells is cultured inside a physical boundary. Microscopy is used to image how the cell
population migrates outwards once the barrier has been removed (Decaestecker et al.
2007; Das et al. 2015). Cells are closely packed in these experiments and thus interact
with their neighbors. Our case study ABMs simulate how two stimuli, namely, cell
pulling and adhesion, impact collectively migrating cell populations. These processes
are ubiquitous in cell biology. For example, leader cells pull their followers into the
wound area to heal wounded epithelial tissue, and cell adhesions in embryonic cells
ensures the self organization of the different germ layers (Kashef and Franz 2015;
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Venhuizen and Zegers 2017; Vishwakarma et al. 2020). ABMs provide a promising
avenue tomodel the impacts of these stimuli on collectivelymigrating cell populations.

We begin this work in Sect. 2 by presenting the case study ABMs and notation. In
Sect. 3, we discuss ourmethodologies to forecast and predict ABMbehavior. In Sect. 4,
we detail our results on using these methods to forecast and predict data from the three
case study ABMs; this section concludes with a brief discussion on the computational
expenses of each method. We conclude these results and suggest areas for future work
in Sect. 5.

2 The Case Study ABMs

We consider three case study ABMs that imitate collective migration during cell bio-
logical experiments, including scratch and barrier assays (Nardini et al. 2016; Simpson
et al. 2022; Johnston et al. 2012; Lagergren et al. 2020b; Decaestecker et al. 2007).
Each case study ABM models how cell pulling and adhesion impact collective cell
migration during these experiments (Janiszewska et al. 2020; Rothenberg et al. 2023).
The ABMs are two-dimensional cellular automata with pulling agents that perform
cell pulling rules and/or adhesive agents that perform rules on cell adhesion. Each
model is an exclusion process, meaning that each agent can only occupy one lattice
site at a time, and each lattice site is occupied by at most one agent. The first model
is borrowed from Chappelle and Yates (2019) and consists only of pulling agents;
the second model is inspired by the stochastic space jump model from Anguige and
Schmeiser (2009) and consists only of adhesive agents; to the best of our knowledge,
we are the first to study the third model, which consists of both pulling and adhesive
agents.

In this section, we briefly introduce our case study ABMs and their rules on agent
pulling and adhesion in Sect. 2.1; we then detail our ABM notation and simulation in
Sect. 2.2. Additional details on the ABM rules and implementation can be found in
electronic supplementary materials S1 and S2, respectively.

2.1 Brief Introduction to the Case Study ABMs and Their Model Rules

Rules A-F governing agent pulling and adhesion are visually depicted in Fig.1, and
the parameters for each rule are described in Table 1. In all rules, a migrating agent
chooses one of its four neighboring lattice site to move into with equal probability
(Fig. 1a). A migration event is aborted if the lattice site in the chosen direction is
already occupied (Fig. 1b). We refer to a neighboring agent as an agent located next
to the migrating agent in the direction opposite of the chosen migration direction.

Rules A, B, and E are initiated when a pulling agent attempts to migrate, which
occurs with rate r pullm . Migratory pulling agents pull their neighboring agents along
with them with probability ppull . Rules C, D, and F are initiated when an adhesive
agent attempts to migrate, which occurs with rate radhm . Neighboring adhesive agents
adhere to migrating agents and abort the migration event with probability padh . The
parameter α corresponds to the proportion of adhesive agents in the simulation. Even
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Fig. 1 ABM rules on migration, pulling, and adhesion. a When an agent performs a migration event, it
chooses one of the four cardinal directions to move towards with equal probability; migration can also lead
to a pulling or adhesion event in the chosen direction. The migrating agent is referred to as a migrating agent
(M) b A migration event requires the lattice site in the chosen migration direction to be empty; otherwise,
the migration event is aborted. A neighboring agent (N) is an agent located in the direction opposite the
chosen migration direction. c Rules A-F dictate the rules on agent migration, pulling, and adhesion. Here,
we show each rule when an agent chooses to move rightwards. Rule A prescribes how a pulling agent (blue
circle) migrates when there is no neighboring agent. Rule B prescribes how a pulling agent migrates and
attempts to pull a neighboring pulling agent with it. Rule C prescribes how an adhesive agent (red hexagon)
migrates when there is no neighboring agent. Rule D prescribes how a neighboring adhesive agent attempts
to adhere to a migrating adhesive agent and abort its migration event. Rule E prescribes how a migrating
pulling agent attempts to pull its neighboring adhesive agent, while the adhesive agent attempts to adhere
to the pulling agent. Rule F prescribes how a migrating adhesive agent and neighboring pulling agent do
not interact with each other. The last column documents the rate at which each lattice site configuration at
time t changes to the updated lattice site configuration at time t + �t
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Table 1 ABM model parameters

Variable Description Range

r pullm Pulling agent migration rate [0, ∞)

radhm Adhesive agent migration rate [0, ∞)

ppull Probability of successful pulling event [0, 1]
padh Probability of successful adhesion event [0, 1]
α Proportion of adhesive agents [0, 1]
We describe each model parameter and present their range of possible values

thoughwe eventually summarize each ABM simulation along the x-direction, all rules
on migration, pulling, and adhesion occur in all four cardinal directions.

Our three case study ABMs are:

1. The Pulling ABM, which consists of rules A and B. This model has parameters

p = (r pullm , ppull)T .
2. The Adhesion ABM, which consists of rules C and D. This model has parameters

p = (radhm , padh)T .
3. The Pulling & Adhesion ABM, which consists of rules A-F. This model has

parameters p = (r pullm , radhm , ppull , padh, α)T .

2.2 ABMNotation

All parameters used to configure ABM simulations are summarized in Table 2. Each
model is simulated in the spatial domain (x, y) ∈ [0, X ] × [0,Y ]. We represent this
spacewith a two-dimensional latticewith square lattice sites of length� = 1 to imitate
a typical cell length. Let N (r)

P (xi , t j ) and N (r)
H (xi , t j ) denote the number of pulling and

adhesive agents, respectively, in the i th column at the j th timepoint for i = 1, . . . , X
and j = 1, . . . , T f from the r th of R identically prepared ABM simulations (the
input model parameters are fixed but the R model initializations and subsequent agent
behaviors are stochastic). Here, X and T f denote the number of spatial columns and
temporal grid points, respectively. To estimate the spatiotemporal pulling and adhesive
agent densities from the r th simulation, we compute

P(r)(xi , t j ) = N (r)
P (xi , t j )

Y
and H (r)(xi , t j ) = N (r)

H (xi , t j )

Y
, for i = 1, . . . , X , and j = 1, . . . , T f ,

respectively. The total agent density in the r th simulation is then estimated by

T (r)(xi , t j ) = P(r)(xi , t j ) + H (r)(xi , t j ).
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Table 2 ABM configuration parameters

Variable Description Value

R Number of averaged ABM simulations per dataset 25

t f Ending simulation time 1000

�t Spacing between temporal gridpoints 10

T f Number of total timepoints 100

T train
f Number of training timepoints 75

T test
f Number of testing timepoints 25

X Number of horizontal lattice sites 200

Y Number of vertical lattice sites 40

�x Spacing between spatial points 1

We describe each parameter used for ABM configuration and present the values used throughout this study

To estimate the averaged pulling, adhesive, and total agent density in the i th column
from R identically prepared ABM simulations over time, we compute:

〈PABM (xi , t j )〉 = 1

R

R∑

r=1

P(r)(xi , t j );

〈H ABM (xi , t j )〉 = 1

R

R∑

r=1

H (r)(xi , t j ); and

〈T ABM (xi , t j )〉 = 1

R

R∑

r=1

T (r)(xi , t j ), for i = 1, . . . , X and j = 1, . . . , T f .

3 Methods to Forecast and Predict ABMData

In this section, we outline our methodologies for forecasting future ABM data
and predicting ABM data at new parameter values. This begins with a descrip-
tion of how we generate ABM data in Sect. 3.1 followed by an overview of the
four methods we use for ABM forecasting in Sect. 3.2. We then describe our
approaches for ABM forecasting and prediction in Sects. 3.3 and 3.4, respectively.
We visualize how BINNs can be used for these processes in Fig. 2. All methods
are implemented using Python (version 3.9.12) with code available on GitHub at
https://github.com/johnnardini/Forecasting_predicting_ABMs.

3.1 Simulating ABMData

The process of simulating ABM data is illustrated in Part 1 of Fig. 2. At the parameter

value p, we calculate 〈T ABM (x, t; p)〉 = {〈T ABM (xi , t j ; p)〉} j=1,...,T f
i=1,...,X . For subse-
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Fig. 2 Forecasting and predicting ABM data with BINNs. 1. Simulating ABM data. For a given parameter,
p, we simulate the Pulling, Adhesion, or Pulling & Adhesion ABM. Each model outputs snapshots of
agent locations over time; we summarize this data by estimating the average total agent density along
the x-direction for each snapshot. We perform R total ABM simulations (shown as thin lines) for each p
and average the total spatiotemporal agent density to obtain 〈T ABM (x, t; p)〉; in this figure, R = 5. The
first T train

f timepoints are placed into a training ABM dataset, and the final T test
f timepoints are placed

into a testingABMdataset. 2. Training biologically-informed neural networks (BINNs) to ABM data. Each

BINNmodel consists of a data-approximatingMLP, T MLP (x, t), and a diffusion-rate-approximatingMLP,
DMLP (T ). BINN models are trained so that T MLP (x, t) ≈ 〈T ABM (x, t; p)〉train while T MLP and
DMLP satisfy Eq. (7). After model training, the inferred DMLP (T ) estimates the agent diffusion rate.
3a. Forecasting ABM data. Simulating the diffusion PDE framework withDMLP (T ) allows us to forecast
the ABM training and testing data. 3b. Predicting new ABM data. We predict the rate of agent diffusion

at a new parameter, pnew , by interpolating DMLP (T ; p) over several p values to create Dinterp(T ; p).
Simulating the diffusion PDE frameworkwithDinterp(T ; pnew) allows us to predict the newABM training
and testing data
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quent model training and validation purposes, we split 〈T ABM (x, t; p)〉 into training
and testing datasets by setting

〈T ABM (x, t; p)〉train =
{
〈T ABM (xi , t j ; p)〉

} j=1,...,T train
f

i=1,...,X
, and

〈T ABM (x, t; p)〉test =
{
〈T ABM (xi , t j ; p)〉

} j=T train
f +1,...,T train

f +T test
f

i=1,...,X
. (1)

Here, T train
f and T test

f denote the number of training and testing timepoints, respec-

tively, and T f = T train
f + T test

f .

3.2 Models to Forecast ABMData

We now describe the four models we use to forecast future ABM data. Namely, these
models are the mean-field PDE, ANN, BINN, and BINN-guided PDE models.

The mean-field and BINN-guided PDE models consist of simulating a PDE of the
form1:

∂T

∂t
= ∂

∂x

(
D(T )

∂T

∂x

)
, (2)

where T = T (x, t) = P(x, t) + H(x, t) denotes the total agent density over space
and time. The form of D(T ) in Eq. (2) changes based on the ABM and the modeling
approach being used. For the mean-field PDE, we determine the form of D(T ) by
converting discrete ABM rules into their continuous counterparts and invoking the
mean-field assumption, which may be invalid at some parameter values. BINNs, on
the other hand, are a data-driven approach to infer D(T ) from the data without any
such a priori assumptions.

The ANN and BINN models consist of training a prescribed neural network to
ABM data and then using the trained neural network to forecast future data.

3.2.1 Mean-Field PDE Models

Here, we present the mean-field PDEmodels for each case study ABM.More detailed
informationonhow theABMrules are coarse-grained into thesemodels are provided in
electronic supplementary material S4. Our numerical method to numerically integrate
these PDE models is provided in electronic supplementary material S6.

The Pulling ABM: The Pulling ABM includes only pulling agents and consists of
Rules A-B from Fig. 1. In electronic supplementary material S4.1, we show that these
rules can be coarse grained into the Pulling ABM’s mean-field PDE model:

∂P

∂t
= ∇ ·

(
D pull(P)∇P

)
, D pull(P) = r pullm

4

(
1 + 3ppull P

2
)

(3)

1 with the exception of the mean-field PDE for the Pulling & Adhesion ABM, which requires simulating
the two-compartment PDE given by Eq. (5) in Sect. 3.2.1

123



130 Page 10 of 28 J. T. Nardini

where P = P(x, y, t) denotes the spatiotemporal pulling agent density.
The Adhesion ABM: The Adhesion ABM includes only adhesive agents and con-

sists of Rules C-D fromFig. 1. In electronic supplementarymaterial S4.2, we show that
these rules can be coarse grained into the Adhesion ABM’s mean-field PDE model:

∂H

∂t
= ∇ ·

(
Dadh(H)∇H

)
, Dadh(H) = 3radhm

4

(
padh

(
H − 2

3

)2

+ 1 − 4padh
3

)

(4)
where H = H(x, y, t) denotes the spatiotemporal adhesive agent density.

Notice thatDadh(H) from Eq. (4) becomes negative for some density values when
padh > 0.75. This PDE thus fails to provide an ABM prediction at these parameter
values because negative diffusion is ill-posed (Anguige and Schmeiser 2009).

The Pulling & Adhesion ABM: The Pulling & Adhesion ABM includes both
pulling and adhesive agents, and consists of Rules A-F from Fig.1. In electronic
supplementary material S4.3, we show that these rules can be coarse-grained into the
Pulling & Adhesion ABM’s mean-field PDE model:

∂P

∂t
=r pullm

4
∇ ·

(
(1 − T )∇P + P∇T

)

+ padh
r pullm

4
∇ ·

(
− 3P(1 − T )∇H − H(1 − T )∇P − HP∇T

)

+ ppull
r pullm

4
∇ ·

(
3P2∇T

)

∂H

∂t
=radhm

4
∇ ·

(
(1 − T )∇H + H∇T

)

+ padh
radhm

4
∇ ·

(
− 4(1 − T )H∇H − H2∇T

)

+ ppull
r pullm

4
∇ ·

(
− (1 − T )H∇P + (1 − T )P∇H + 3HP∇T

)
. (5)

This two-compartment PDE describes the spatiotemporal densities of pulling agents,
P(x, y, t), and adhesive agents, H = H(x, y, t). The total agent density is given
by T = T (x, y, t) = H(x, y, t) + P(x, y, t). To the best of our knowledge, it is
not possible to convert Rules A-F into a single-compartment PDE model describing
T (x, y, t)

3.2.2 The ANNModel

ANNs have recently gained traction as surrogate models for ABMs (Larie et al. 2021;
Angione et al. 2022). Here, we consider a simple multilayer perceptron (MLP) model,
T MLP (x, t), to predict the total agent density at the spatiotemporal point (x, t). We
provide a brief description of the model architecture and training procedure in this
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section; more detailed information can be found in electronic supplementary material
S5.

The ANN architecture: T MLP (x, t) has a two-dimensional input, (x, t), and one-
dimensional output, T (x, t). This model has three hidden layers, each with 128
neurons. The hidden layers all have sigmoidal activation functions, and the output
layer has a softplus activation function.

ANN model training: The ANN model is trained to minimize

LANN = LWLS, (6)

where LWLS is given by Equation (S21) in electronic supplementary material S5
and computes a weighted mean-squared error (MSE) between T MLP (x, t) and
〈T ABM (x, t)〉train . Here, extra weight is assigned to data from the first timepoint
to ensure that T MLP closely agrees with the ABM’s initial data.

We use the ADAM optimizer with default hyperparameter values to minimize
Eq. (6). We perform 104 epochs with an early stopping criterion of 103 epochs.

3.2.3 The BINNModel

We provide a brief overview of our BINN model architecture and training procedure,
which closely follows the implementation from the original BINN model study in
Lagergren et al. (2020b). More detailed information can be found in electronic sup-
plementary material S5.

The BINN architecture:We construct BINNmodels that consist of two sequential
MLP models: T MLP (x, t) predicts the total agent density at the point (x, t), and
DMLP (T ) predicts the agent diffusion rate at the density value T (Part 2 of Fig. 2). The
architecture for T MLP (x, t) here is identical to the ANN architecture. The architecture
for DMLP (T ) also has three hidden layers (each with 128 neurons), and the same
hidden and output activation functions. However, this model has a one-dimensional
input, T , and one-dimensional output, D(T ).

BINN model training: The two MLPs comprising the BINN model are trained to

concurrently fit the given dataset, 〈T ABM (x, t)〉train , and solve the PDE given by

∂

∂t
T MLP = ∂

∂x

(
DMLP (T MLP )

∂

∂x
T MLP

)
. (7)

This is achieved by minimizing the following multi-term loss function:

LBI NN = LWLS + εLPDE + Lconstr . (8)

The equation for LWLS is identical to Eq. (6), LPDE computes the MSE between
the left- and right-hand sides of Eq. (7) to ensure both MLPs satisfy this diffusion
framework, and Lconstr penalizes the two MLPs for violating user-defined criteria
(such as lower and upper bounds on DMLP ). The equations for these three terms are
provided in Equations (S21), (S22), and (S23) from electronic supplementary material
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S5. The ε parameter is chosen to ensure the LWLS and LPDE terms are weighted
equally.

Following (Linka et al. 2022), we minimize Eq. (8) in a two-step process. In the
first step, we minimize Eq. (6) over 104 epochs with an early stopping criterion of 103

epochs. In the second step, we minimize Equation (8) over 106 epochs with an early
stopping criterion of 105 epochs. The ADAM optimizer is used during both steps with
its default hyperparameter values.

3.2.4 The BINN-Guided PDEModel

BINN models are trained to satisfy Eq. (7). The BINN-guided PDE model computes
this learned equation by simulating Eq. (2) with D(T ) = DMLP (T ). Our numerical
method to numerically integrate this PDE is provided in electronic supplementary
material S6.

3.3 Forecasting Future ABMData

We use the four models introduced in Sect. 3.2 to forecast future ABM data (Part 3a of
Fig. 2). In forecasting, we assess the ability of a model to compute future ABM data at
a fixed parameter value from previous ABM data. This could correspond to inferring
the future behavior of a computationally-intensive ABM simulation or an expensive
experimental procedure.

We perform ABM forecasting by training each model to the training ABM dataset
and then computing the model prediction over all space- and timepoints. The mean-
field PDEmodel does not require any model training because we can directly compute
it from the ABM parameter values. We then partition each model’s prediction into
training and testing datasets to match the ABM training and testing datasets from
Equation (1). We report the training MSE from each model prediction as:

1

XT train
f

X∑

i=1

T train
f∑

j=1

(
Tmodel(xi , t j ) − 〈T ABM (xi , t j )〉

)2
,

and the testing MSE as:

1

XT test
f

X∑

i=1

T f∑

j=T train
f +1

(
Tmodel(xi , t j ) − 〈T ABM (xi , t j )〉

)2
.

3.4 Predicting New ABMData Using BINN-Guided PDEModels

We combine BINN modeling, multivariate interpolation, and numerical integration
of PDEs to predict new ABM data (Part 3b of Fig. 2). In predicting, we assess the
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ability of our proposed approach to compute ABM data at a parameter value that has
not been seen previously. This could correspond to exploring an ABMs’ parameter
space, or predicting the output of an experimental procedure for different experimental
conditions, such as drug concentration or the initial number of agents.

We perform multivariate interpolation using BINNs’ computed diffusion rates to
predict density-dependent diffusion rates for newABM data. We define a prior param-
eter collection and a new parameter collection as

P prior = { pk}K1
k=1 and Pnew = { pnewk }K2

k=1.

Our workflow for predicting ABM data from Pnew proceeds as follows:

1. Generate the prior and new ABM data collections by simulating the ABM at all
parameters from the prior and new parameter collections:

T prior =
{
〈T ABM (x, t; pk)〉

}K1

k=1
and T new =

{
〈T ABM (x, t; pnewk )〉

}K2

k=1
.

2. Train a BINN model to each kth training ABM dataset from T prior and extract
DMLP (T ; pk) from the trained BINN model.

3. Perform multivariate interpolation on {DMLP (T ; pk)}K1
k=1 to create an interpolant,

Dinterp(T ; p), that matches the concatenated vector [T , pk] to the diffusion rate
DMLP (T ; pk) for k = 1, . . . , K1.

4. Predict the new ABM dataset, 〈T ABM (x, t; pnewk )〉, by simulating Eq. (7) with
D = Dinterp(T ; pnewk ) to create T interp(x, t; pnewk ). Partition T interp(x, t; pnewk )

into its training and testing datasets to match the ABM data’s training and testing
datasets.

5. Compute the training and testing MSEs between T interp(x, t; pnewk ) and
〈T ABM (x, t; pnewk )〉 to summarize thepredictive performanceofT interp(x, t; pnewk )

for k = 1, . . . , K2.

We implement multi-dimensional radial basis function interpolation using Sci-kit
Learn’s (version 0.24.2) RBFInterpolator command to create Dinterp(T ; p).

4 Results

4.1 Mean-Field and BINN-Guided PDEs Accurately Forecast Baseline ABM
Simulations

We simulated the three case study ABMs using the configuration values provided in
Table 2. These values were chosen to match previous studies (Chappelle and Yates
2019; Simpson et al. 2022). For ABMs of collective migration, one often chooses a
large spatiotemporal domain to ensure ample ABM behavior is observed (e.g., the
population spreads) while ensuring the boundary does not affect this behavior. In
Table 3, we provide baseline model parameter values for each case study ABM; these
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Fig. 3 Baseline ABM simulation snapshots and the mean-field PDE models for the Pulling, Adhesion, and
Pulling & Adhesion ABMs. Blue pixels denote pulling agents and red pixels denote adhesive agents. All

ABMs were simulated on rectangular 200×40 lattices. a–c Snapshots of the Pulling ABM for r pullm =
1.0, ppull = 0.5. d–f The output spatiotemporal pulling agent density (blue ‘x’ marks) is plotted against
the solution of the mean-field PDE (solid blue line) given by Eq. (3). g–i Snapshots of the Adhesion ABM
for radhm = 1.0, padh = 0.5. j–l The output spatiotemporal adhesive agent density (red dots) is plotted
against the solution of the mean-field PDE (dashed red line) given by Eq. (4).m–o Snapshots of the Pulling

& Adhesion ABM for r pullm = 1.0, radhm = 0.25, ppull = 0.33, padh = 0.33, α = 0.5. p–r The output
spatiotemporal pulling and adhesive agent densities are plotted against the solution of the mean-field PDE
given by Eq. (5)

values were arbitrarily chosen to demonstrate typical ABM behavior characterized
by moderate population spread. The ABM outputs are depicted against each ABM’s
mean-field PDE in Fig. 3. Themean-field PDEmodels accurately describe the baseline
simulations for all three ABMs.

We investigate the performance of the mean-field PDE, ANN, BINN, and BINN-
guided PDE models in forecasting Pulling ABM data from the baseline parameter
values provided in Table 3. Visual inspection suggests that all four models match the
ABM training data well (Fig. 4a, b). The computed training MSE values reveal that
the mean-field and BINN-guided PDEs outperform the neural networks in describing
this data (Table 3). The BINN, BINN-guided PDE, and mean-field PDE all accurately
forecast the testing data (Fig. 4c), but the two PDEmodels achieve smaller testingMSE
values than the BINN model (Table 3). The ANN’s prediction for the testing data has
a protrusion that overpredicts all data for x > 125 (Fig. 4c inset), which causes this
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Table 3 Computed training and testing MSE values

Forecasting model Training MSE Testing MSE

The Pulling ABM with baseline parameters

p = (r pullm , ppull )
T = (1.0, 0.5)T

ANN 1.17 × 10−4 9.36 × 10−4

BINN 9.32 × 10−5 1.47 × 10−4

Mean-field PDE 7.45 × 10−5 1.00 × 10−4

BINN-guided PDE 7.64 × 10−5 1.02 × 10−4

The Adhesion ABM with baseline parameters

p = (radhm , padh)T = (1.0, 0.5)T

ANN 1.55 × 10−4 1.84 × 10−3

BINN 8.54 × 10−5 1.50 × 10−4

Mean-field PDE 7.18 × 10−5 9.21 × 10−5

BINN-guided PDE 7.43 × 10−5 1.02 × 10−4

The Pulling & Adhesion ABM with baseline parameters

p = (r pullm , radhm , ppull , padh , α)T = (1.0, 0.25, 0.33, 0.33, 0.5)T

ANN 1.25 × 10−4 2.67 × 10−3

BINN 9.65 × 10−5 9.96 × 10−5

Mean-field PDE 7.50 × 10−5 8.55 × 10−5

BINN-guided PDE 6.55 × 10−5 9.11 × 10−5

Computed MSE values when forecasting 〈T ABM (x, t)〉train and 〈T ABM (x, t)〉test from the three ABMs
at their baseline parameter values. We used an ANN, BINN, mean-field PDE, and BINN-guided PDE to
forecast each baseline ABM dataset

Fig. 4 Forecasting Pulling ABM data with neural networks and PDEs. ANN and BINN models were

trained to fit 〈T ABM (x, t)〉train from the Pulling ABM with p = (r pullm , ppull )
T = (1.0, 0.5)T . These

two neural networks and the mean-field and BINN-guided PDE simulations were then used to forecast (a,
b) 〈T ABM (x, t)〉train and c 〈T ABM (x, t)〉test

model’s computed testing MSE value to be almost an order of magnitude higher than
all others. We obtain similar results when using the four models to predict data from
the Adhesion ABM and Pulling & Adhesion ABM at their baseline parameter values
(Table 3 and Supplementary Figure S1).

123



130 Page 16 of 28 J. T. Nardini

4.2 Forecasting ABMData for Many Parameter Values with BINN-Guided and
Mean-Field PDE Simulations

Wenow investigate the performance of BINN-guided andmean-field PDE simulations
in forecasting ABM datasets over a wide range of parameter values for all three case
study ABMs. We only consider the two PDE models (and exclude the neural network
models) in this section due to their strong forecasting performance in Sect. 4.1.

4.2.1 The BINN-Guided andMean-Field PDEs Both Accurately Forecast Pulling ABM
Data

The parameters for the Pulling ABM are p = (r pullm , ppull)T . To evaluate the BINN-
guided and mean-field PDE models’ performances in forecasting Pulling ABM data
over a range of agent pulling parameter values, we computed eleven ABM datasets
by varying ppull = 0.0, 0.1, 0.2, . . . , 1.0 while fixing r pullm at its baseline value of
1.0. The inferred rates of agent diffusion from both models propose that agents diffuse
slower for low densities and faster for high densities (Fig. 5a). While the mean-field
diffusion rate at ppull = 0 is constant, BINNs do not use this a priori information.
Instead, their flexible nature leads to them learning a different diffusion rate from the
data. The two PDE models achieve comparable training and testing MSE values for
all values of ppull , though the mean-field PDE usually attains slightly smaller values
(Fig. 5b). Snapshots of both simulated PDEmodels against data shows that their ABM
predictions are visually indistinguishable (Supplementary Figure S2(a-c)).

To evaluate both PDE models’ performances over a range of pulling agent migra-
tion values, we computed 10 Pulling ABM datasets with r pullm = 0.1, 0.2, . . . , 1.0
while fixing ppull at its baseline value of 0.5. We find close agreement between both
models’ inferred diffusion rates for all values (Fig. 5c). Both models achieve similar
computed training and testingMSE values (Fig. 5d). Snapshots of both simulated PDE
models against data reveals that their ABM predictions are visually indistinguishable
(Supplementary Figure S2(d-f)).

4.2.2 BINN-Guided PDEs Accurately Forecast Adhesion ABM Data When the
Mean-Field PDE is Ill-Posed

The parameters for the pulling ABM are p = (radhm , padh)T . To evaluate the
BINN-guided and mean-field PDE models’ performances over a range of agent
adhesion parameter values, we computed eleven ABM datasets by varying padh =
0.0, 0.1, 0.2, . . . , 1.0 while fixing radhm at its baseline value of 1.0. The inferred rates
of agent diffusion from both models decrease with agent density for most values of
padh (Fig. 6a). When padh = 0, the BINN-guided diffusion rate is slightly increasing
and themean-fieldmodel’s diffusion rate is constant. The BINN-guided diffusion rates
decline faster with agent density than the corresponding mean-field diffusion rates for
low density values. We computed the training and testing MSEs for both models for
all values of padh (Fig. 6b) and partition the results as follows:
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Fig. 5 Forecasting Pulling ABM data with the mean-field (MF) and BINN-guided PDEs. a Plots of the
mean-field diffusion rate, D pull (T ), from Eq. (3) and the BINN-guided diffusion rate, DMLP (T ), for
ppull = 0.1, 0.3, . . . , 0.9 (results not shown for ppull = 0.0, 0.2, . . . , 1.0 for visual ease) while fixing

r pullm at its baseline value of 1.0. The horizontal axis ends at 0.75 instead of 1.0 because theABMsimulations
begin with a density of 0.75 and will rarely exceed this initial value. The BINN cannot reliably predict the
diffusion rate for densities outside the values observed in the data. b Plots of the mean-field and BINN-
guided PDEs’ computed training and testing MSE values while varying ppull and fixing r pullm = 1.0. c

Plots of D pull (T ) and DMLP (T ) for r pullm = 0.2, 0.4, . . . , 1.0 while fixing ppull at its baseline value of
0.5. d Plots of the mean-field and BINN-guided PDEs’ computed training and testing MSE values while

varying r pullm and fixing ppull = 0.5

• When padh < 0.5: bothmodels achieve similar trainingMSEvalues near 7×10−5

and testing MSE values around 10−4.
• When 0.5 ≤ padh ≤ 0.75: the mean-field PDEmodels’ training and testingMSE
values increase with padh , with a maximum computed value above 3× 10−4. The
BINN-guided PDEmodel’s training and testingMSE values remain near 7×10−5

and 10−4, respectively.
• When padh > 0.75: the mean-field PDE model is ill-posed and cannot forecast
this ABM data. The BINN-guided PDE model’s computed training and testing
MSE values increase with padh and have a maximum computed value of 2×10−4.

Close inspection of snapshots from both PDE model simulations against ABM data
from padh = 0.7 reveals that the mean-field PDE model slightly overpredicts the data
at high densities above 0.5 and low densities below 0.1, whereas the BINN-guided
PDE closely matches the data (Supplementary Figure S3(a-c)).
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Fig. 6 Forecasting Adhesion ABM data with the mean-field (MF) and BINN-guided PDEs. a Plots of
the mean-field diffusion rate, Dadh(T ), from Eq. (4) and the BINN-guided diffusion rate, DMLP (T ), for
padh = 0.1, 0.3, . . . , 0.9 (results not shown for padh = 0.0, 0.2, . . . , 1.0 for visual ease) while fixing
radhm at its baseline value of 1.0. b Plots of the mean-field and BINN-guided PDEs’ computed training
and testing MSE values while varying padh and fixing radhm = 1.0. c Plots of Dadh(T ) and DMLP (T )

for radhm = 0.2, 0.4, . . . , 1.0 while fixing padh at its baseline value of 0.5. d Plots of the mean-field and
BINN-guided PDEs’ computed training and testing MSE values while varying radhm and fixing padh = 0.5

To evaluate both PDE models’ performances over a range of adhesive agent migra-
tion values, we computed tenABMdatasetswith radhm = 0.1, 0.2, . . . , 1.0while fixing
padh at its baseline value of 0.5. Both PDEs achieve similar computed training and
testing MSE values for most values of radhm (Fig. 6d). When radhm = 0.1, however, the
BINN-guided PDE’s testing MSE value is close to 10−4, whereas the mean-field PDE
attains a lower testing MSE value near 6 × 10−5. Despite these differences, the two
model simulations appear similar at these parameter values (Supplementary Figure
S3(d-f)).
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Fig. 7 The BINN-guided diffusion rates for the Pulling & Adhesion ABM data. Plots of the BINN-guided

diffusion rate, DMLP (T ), when varying a r pullm , b radhm , c ppull , d padh , and e α

4.2.3 BINN-Guided PDEs Accurately Forecast Pulling & Adhesion ABM Data with a
One-Compartment Model

Theparameters for thePulling&AdhesionABMare p = (r pullm , radhm , ppull , padh, α)T .
We evaluate the performance of the BINN-guided and mean-field DE models in fore-
casting data from the Pulling & Adhesion ABM. We created 48 ABM datasets by
fixing the baseline parameter values at pbase = (1.0, 0.25, 0.33, 0.33, 0.5)T and
then varying each parameter individually. We vary r pullm = 0.5, 0.6, . . . , 1.5; radhm =
0.0, 0.1, . . . , 1.0; ppull = 0.1, 0.2, . . . , 0.6, 0.67; padh = 0.1, 0.2, . . . , 0.6, 0.67;
and α = 0.0, 0.1, . . . , 1.0. These parameter values were chosen to always satisfy
ppull + padh ≤ 1.

The BINN models’ inferred diffusion rates, DMLP (T ; p), are often U-shaped
with larger diffusion values at low and high agent densities and smaller values at
intermediate densities (Fig. 7). This U-shape tends to increase for larger values of
r pullm , radhm , and ppull and decrease for larger values of padh and α. The inferred
diffusion rates appear most sensitive to changes in the α parameter: at α = 0.0,
DMLP (T ; p) strictly increases with agent density and attains an average value of
0.289; at α = 1.0, DMLP (T ; p) is strictly decreasing and has an average value of
0.051. The inferred diffusion rate is also sensitive to the radhm and r pullm parameters:
varying radhm primarily alters the BINN diffusion rate at intermediate agent density

values, whereas varying r pullm changes the BINN diffusion rate at low and high agent
density values.

The BINN-guided PDE computes a single compartment to forecast the total agent
density, T (x, t), whereas the mean-field PDE computes two compartments fore-
casting the Pulling and Adhesive agent densities, P(x, t) and H(x, t), respectively.
We forecast the total agent density with the mean-field PDE by setting T (x, t) =
P(x, t) + H(x, t). The two PDE models achieve similar training MSE values for
most parameter values that we considered (Fig. 8). The mean-field model’s testing
MSE values are often smaller than the BINN-guided testing MSE values, though the
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Fig. 8 Forecasting Pulling &Adhesion ABM data with the mean-field and BINN-guided PDEs. Plots of the

mean-field and BINN-guided PDEs’ computed training and testing values while varying a r pullm , b radhm , c
ppull , d padh , and e α

BINN-guided PDE also achieves small testing MSE values. For example, both PDE
simulations accurately predict ABM data when padh is set to 0.4, but visualizing both
PDE simulations shows that the mean-field PDE better matches the elbow of the data
than the BINN-guided PDE (Supplementary Figure S4(a-c)). The BINN-guided PDE
outperforms the mean-field PDE in forecasting data for small values of radhm : plotting
both PDE simulations against data from radhm = 0.1 shows that the mean-field PDE
underpredicts the largest agent density values, while the BINN-guided PDE accurately
matches this data (Supplementary Figure S4(d-f)).

4.3 Predicting ABMData at New Parameter Values

We now examine how performing multivariate interpolation on several BINN-guided
diffusion rates, DMLP (T ; p), can aid the prediction of previously-unseen ABM data
at new parameter values (see Sect. 3.4 for implementation details).

We predict new data from the Adhesion and Pulling & Adhesion ABMs in this
section. We do not include the Pulling ABM in this work because the mean-field PDE
model accurately forecasted ABM data for all parameter values that we considered in
Sect. 4.2.1.

4.3.1 Predicting Adhesion ABM Data

The parameters for the Adhesion ABM are p = (radhm , padh)T . We perform ABM
data prediction for padh ≥ 0.5 in this section because we found that the mean-field
PDE model accurately forecasted ABM data for padh ≤ 0.5 in Sect. 4.2.2.

We first predict ABM data when varying padh and fixing radhm . The prior data
collection consists of K1 = 6 ABM datasets generated by varying padh =
0.5, 0.6, 0.7, . . . , 1.0 while fixing radhm at its baseline value of 1.0; the new data
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Fig. 9 Predicting Adhesion ABM data with BINN-guided PDEs and multivariate interpolation for new
padh values. The parameters for the Adhesion ABM are given by p = (radhm , padh)T .Here, we vary padh
while fixing radhm at its baseline value of 1.0. The prior data collection consists of padh = 0.5, 0.6, . . . , 1.0
and the new data collection consists of padh = 0.55, 0.65, . . . , 0.95 a Plots of the learned DMLP (T ; p)
diffusion rates for the prior data collection. We performed multivariate interpolation on these rates to obtain
Dinterp(T ; p), which we plot for the new data collection. b Plots of the BINN-guided PDEs’ computed
training and testing values on the prior data collection, and the interpolated PDE’s training and testing
values on the new data collection

collection consists of K2 = 5 ABM datasets generated by varying padh =
0.55, 0.65, 0.75, 0.85, and 0.95 while fixing radhm at its baseline value of 1.0. We
performed multivariate interpolation over the six inferred DMLP (T ; p) terms from
the prior data collection to generate Dinterp(T ; p). We use this interpolant to pre-
dict the diffusion rates for all parameters from the new data collection (Fig. 9a). All
interpolated diffusion rates decrease with agent density and tend to fall with larger
padh values. Most of the computed training and testing MSE values on the new data
collection are comparable to their counterparts from the prior data collection (Fig. 9b).
The lone exception occurs at padh = 0.95, where the testing MSE exceeds 5 × 10−4

while the testing MSEs at padh = 0.9 and 1.0 do not exceed 2.5 × 10−4. Visual
inspection of the simulated PDE prediction against ABM data at padh = 0.95 reveals
that it matches the data well but slightly mispredicts the data’s heel at later time points
(Supplementary Figure S5(a-c)).

We next predict ABM data when varying both radhm and padh . The prior data collec-
tion consists of K1 = 18 ABM datasets generated by varying radhm = 0.1, 0.5, 1.0 and
padh = 0.5, 0.6, . . . , 1.0; the new data collection consists of K2 = 10 ABM datasets
generated from a latin hypercube sampling of (radhm , padh) ∈ [0.1, 1.0] × [0.5, 1.0]
(Fig. 10a and Supplementary Table S2). We performed multivariate interpolation over
each DMLP (T ; p) from the prior data collection to generate Dinterp(T ; p). The pre-
dicted diffusion rates for the new data collection decrease with agent density, rise for
larger radhm values, and decrease faster for larger padh values (Fig. 10b). We order the
parameters from the new data collection by increasing trainingMSE values (Fig. 10c).
The four lowest training and testing MSE values are all below 1 × 10−4, the eight
lowest are all below 2× 10−4, and the highest testing MSE value reaches 1.6× 10−3.
Visual inspection of the interpolated PDE prediction with the highest testing MSE
value reveals that this simulation mispredicts the data’s heel but otherwise matches
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Fig. 10 Predicting Adhesion ABM data with BINN-guided PDEs and multivariate interpolation for new
radhm and padh values. The parameters for the Adhesion ABM are given by p = (radhm , padh)T .

Here, we vary both parameters. a The prior data collection consists of radhm = 0.1, 0.5, 1.0 and
padh = 0.5, 0.6, . . . , 1.0 and the new data collection consists of a Latin hypercube (LHC) sampling
of p ∈ [0.1, 1.0] × [0.5, 1.0] with K2 = 10 samples. b We performed multivariate interpolation on
the DMLP (T ; p) rates on the prior data collection to obtain Dinterp(T ; p). We plot three illustrative
Dinterp(T ; p) values from the new data collection. c Plots of the interpolated PDE’s training and testing
values on the new data collection

the ABM data well (Supplementary Figure S6(a-c)). Visual inspection of the inter-
polated PDE prediction with the third-highest MSE value shows that this simulation
accurately matches the ABM data (Supplementary Figure S6(d-f)).

4.3.2 Predicting Adhesion & Pulling ABM Data

Theparameters for thePulling&AdhesionABMare p = (r pullm , radhm , ppull , padh, α)T .
We perform ABM data prediction over a large range of parameter values to determine
if the one-compartment BINN-guided PDE simulations can predict this ABM’s data,
which results from two interacting subpopulations.

We perform multivariate interpolation over the ppull , padh, and α parameters

while fixing r pullm and radhm at their baseline values of 1.0 and 0.25, respectively.
The prior and new data collections consist of K1 = 40 and K2 = 20 ABM parameter
combinations, respectively, that were generated from Latin hypercube samplings of
(ppull , padh, α) ∈ [0, 0.67]×[0, 0.67]×[0, 1] (Fig. 11a and Supplementary Tables S3
and S4).We chose samplings where ppull + padh ≤ 1.0 for all samples. The computed
training and testing MSE values for the new parameter collection suggest all simu-
lated PDE predictions accurately match the ABM data at those parameters (Fig. 11b).
Of the K2 = 20 computed testing MSE values in the new data collection, four are
below 1× 10−4, 16 are below 2× 10−4, and all are below 5× 10−4. The highest and
third highest testingMSE value results from (ppull , padh, α) = (0.218, 0.553, 0.675)
and (0.251, 0.486, 0.975), respectively. Visually inspecting the interpolated PDE pre-
dictions from these parameter values against ABM data reveals that both match the
data well, though the worst prediction overpredicts the largest ABM density values
(Supplementary Figure S7).
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Fig. 11 Predicting Pulling & Adhesion ABM data for new ppull , padh , and α values. The parameters for

the Adhesion ABM are given by p = (radhm , r pullm , padh , ppull , α)T . Here, we vary ppull , padh , and α

while fixing r pullm and radhm at their baseline values of 1.0 and 0.25, respectively. a The prior data consists
of a Latin hypercube (LHC) sampling of (ppull , padh , α) ∈ [0, 0.67] × [0, 0.67] × [0, 1] with K1 = 40
samples and the new data consists of a LHC sampling of the same domain with K2 = 20 samples. b Plots
of the interpolated PDE’s training and testing values on the new data, arranged by increasing training MSE
values

Table 4 Computational expenses of each modeling approach

ABM Name ABM simulation MF PDE simulation BINN training BG PDE simulation

Adhesion 37.5 (15.4) min 0.5 (0.15) s 10.6 (4.44) h 16.9 (23.65) s

Pulling 39.9 (15.8) min 0.6 (0.20) s 10.0 (3.99) h 164.8 (156.9) s

Pulling & Adhesion 42.5 (15.52) min 4.7 (1.20) s 13.1 (4.54) h 66.9 (50.81) s

Average 40.0min 1.9 s 11.2h 82.9 s

Themean wall time computations (standard deviation in parentheses) for ABM simulations, BINN training,
mean-field (MF) PDE simulations, and BINN-guided (BG) PDE simulations for all three ABMs. The last
row depicts the average mean computation time across all three ABMs

4.4 Comparing the Computational Expense of EachModeling Approach

We finish with a discussion on the computational expense of all approaches discussed
in this work (Table 4 and Supplementary Figure S8). We recorded the computed wall
times to simulate each ABM, train each BINN model, and simulate each PDE from
Sect. 4.2. Averaging across all ABMs suggests that the average ABM dataset took
40.0min to generate with a standard deviation of 15.6min. The average mean-field
PDE model simulations for the Pulling ABM and the Adhesion ABM took 0.6 and
0.5 s to complete, respectively, which are about 4,000 and 4,500 times faster than the
average ABM simulation time. The average mean-field PDE model simulation time
for the Pulling & Adhesion ABMwas 4.7 s, which is 542 times faster than the average
ABM simulation time. Training a BINN model is the most time-consuming task with
an average time of 11.2h across all ABMs with a standard deviation of 4.32h. The
averageBINN-guidedPDE simulation takes 82.9 swith a standard deviation of 77.12 s,
which is approximately 28 times faster than simulating the ABM.
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5 Discussion and FutureWork

In this work, we introduced how BINNs can be used to learn BINN-guided PDEmod-
els from simulated ABM data. BINN-guided PDE model simulations provide a new
approach for forecasting and predicting ABM data. This methodology works by train-
ing a BINN model to match simulated ABM data while also obeying a pre-specified
PDE model framework. After model training, future ABM data can be forecasted by
simulating the BINN-guided PDE. Predicting ABM data at new parameters can be
performed by simulating the pre-specified PDE framework with an interpolated mod-
eling term. This model term is computed by interpolating over several learned BINN
model terms and the parameter values that led to these terms.

It is challenging to predict how model parameters affect ABMs’ output behavior
due to their heavy computational nature. Mathematical modelers often address this
limitation by coarse-grainingABMrules into computationally-efficientmean-fieldDE
models. Unfortunately, these DE models may give misleading ABM predictions; fur-
thermore, they can be ill-posed for certain parameter values (Anguige and Schmeiser
2009; Baker and Simpson 2010). Here, we demonstrated that BINN-guided PDEmod-
els accurately forecast future ABM data and predict ABM data from new parameter
values. One benefit of this BINN-guided approach for ABM prediction is that BINNs
can, in theory, be trained to simulated data from complex ABMs because BINN mod-
els are agnostic to the ABM rules. This is in contrast to the coarse-graining approach,
which is limited to ABMs with simple rules to ensure a final PDE model can be
recovered.

A limitation of the BINN-guided approach for ABM forecasting and prediction
is the computational expense of BINN model training. The average BINN training
procedure in this study took 11.2h, which is 17 times longer than the average ABM
data generation time of 40min. Once a BINN model has been trained, however, the
average BINN-guided PDE simulation took 83s, which is 28 times faster than the
average time to generate an ABM dataset. One possible source of these long BINN
training times is our chosen BINN model architecture, which consists of over over
50,000 parameters to train. Kaplarevi-Malii et al. Kaplarević-Malisić et al. (2023)
proposed a genetic algorithm to identify the optimal model archictecture for PINN
models. In future work, we plan to implement this algorithm to identify simpler BINN
model architectures that can be efficiently trained to learn predictive PDE models for
ABMs.

This work was purely computational, as we applied all prediction methodologies to
simulated ABM data. It will be interesting in the future to validate the BINN-guided
methodology on experimental data. Performing data-drivenmodeling techniques, such
as parameter estimation, is challenging for ABMs due to their long simulation times.
Our results suggest that BINN-guided PDEmodels may advance parameter estimation
for ABMs by providing an accurate and efficient ABM surrogate model. For example,
a typical approximate Bayesian computation (ABC) for parameter estimation requires
performing 10,000 ABM simulations (Nguyen et al. 2024), which would require more
than 6,600 computational hours. If we instead simulate the ABM at 10 parameter
combinations, train BINN models to these data, and then use 10,000 interpolated
BINN-guided PDE model simulations for ABC, then this total process would take
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Table 5 Highlighting the ability of mean-field (MF) and BINN-guided (BG) PDEs to accurately forecast
simulated ABM data with interpretable PDE models

ABM prediction Interpretability

Pulling ABM MF PDE accurate for all parameters MF PDE is interpretable

BG PDE accurate for all parameters BG PDE is interpretable

Adhesion ABM MF PDE accurate for padh ≤ 0.5 MF PDE is interpretable

BG PDE accurate for padh ≤ 0.9 BG PDE is interpretable

Pulling & Adhesion ABM MF PDE accurate for all parameters MF PDE not interpretable

BG PDE accurate for all parameters BG PDE is interpretable

349h, a 19-fold reduction in time. This process will become even more efficient with
new methodologies to expedite BINN model training.

Case study: collective migration.We studied three case study ABMs that are appli-
cable to cell biological experiments, such as barrier and scratch assays. Each ABM
consists of rules governing how key cellular interactions (namely, pulling and adhe-
sion) impact the collective migration of cell populations during these experiments
(Nardini et al. 2016; Thompson et al. 2012). Table 5 summarizes the predictive and
interpretative capabilities of the mean-field and BINN-guided PDE models for the
three case study ABMs. For the Pulling ABM, both models use interpretable one-
compartment PDEs that accurately predict ABM behavior for all parameter values.
For the Adhesion ABM, the mean-field PDE predictions become less accurate for
padh ∈ [0.5, 0.75] and are ill-posed for padh > 0.75, whereas the BINN-guided
PDEs make accurate predictions for padh ≤ 0.9. For the Pulling & Adhesion ABM,
both PDE models accurately forecast the total ABM data for most parameter values
considered. Themean-field PDEmodel is not interpretable, as it contains two compart-
ments that consist of many terms. The BINN-guided PDE, on the other hand, achieves
similar accuracy to the mean-field PDE with an interpretable one-compartment PDE
model.

We compared the performance of the mean-field and BINN-guided PDE models
throughout this work. We emphasize, however, that these two approaches are com-
plementary, and our thorough investigation highlights the strengths and limitations of
each model. The mean-field PDE is fast to simulate but can provide inaccurate, ill-
posed, and/or uninterpretable ABM predictions. The BINN-guided PDE accurately
predicts ABM behavior with an interpretable PDE, but current BINN model training
times are lengthy. We encourage modelers to refer to these guidelines when deciding
which approach to use for their future applications.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11538-024-01357-2.
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